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The equations of motion presented in the literature for a circular shaft rotating about
its centroidal axis assume a constant angular velocity and include a single coupling effect
resulting from the Coriolis inertia force component of the gyroscopic moment. The
objective of this investigation is to address the limitations of the classical equations of
motion and provide a comprehensive model for a shaft rotating about its axis at an
arbitrary angular velocity. The general equations of motion for a flexible body are derived
through the application of the principle of virtual work in dynamics and are tailored to
the specific case of the rotating shaft problem. The equations are shown to include both
the Coriolis and centrifugal inertia forces, and the effect of the inertia terms on the system
dynamic stability is demonstrated. The effect of the rotary inertia on the axial and
transverse deformations is formulated and the coupling terms are obtained. The case of
a shaft rotating with a non-constant angular velocity is also examined and the effect of the
angular acceleration on the stability of the shaft is addressed. The generality of the
approach presented in this study is further demonstrated by considering the dynamics of
a rotating shaft subject to a base excitation. The coupling between the base motion and
the deformation of the shaft is examined numerically and the effect of the support motion
on the dynamics of the shaft is discussed for both a low level and high level disturbance.
The results presented in this investigation demonstrate that the general flexible body
formulation can be used to study rotating shafts. As a consequence, general purpose flexible
multibody computer algorithms can be used to systematically solve more general rotating
shaft problems.
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1. INTRODUCTION

Systems such as internal combustion engines, power generators and turbines, flexible
antennas, rotating airfoils, and high speed machining are driven by rotating shafts which
are subject to dynamic inertia forces. In many applications, the rotational speed is low
enough that the effects of the dynamic inertia forces can be ignored [1]. However, in other
cases such as in high speed machining, the inertia effects must be taken into account. It
was reported in reference [2], that high-speed spindles operating at up to 100 000 r.p.m.
are used in the fabrication of precision tools for the plastic injection molding industry.
These spindles drive grinders for machining operations requiring a surface finish with an
accuracy of 50×10−6 in and details located at 20·0001 in tolerance. With the
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advent of high-speed machining, not only has an improvement been realized in grinding
operations, but the accuracy in milling applications has also improved by an order of
magnitude. A conventional horizontal mill when machining 24 in aluminium cooling fins
can hold a thickness tolerance of 20·01 inch. When fitted with a high-speed spindle, a
thickness tolerance of less than 20·003 inch is possible, and it is becoming common
practice to machine highly vibration sensitive materials [3] which were not possible with
conventional systems. In addition, it was demonstrated in references [4] and [5] that spindle
and bearing vibration can be reduced, and the overall system stability improved by
regulating the rotational speed of the spindle system.

As the shaft/rotor configuration limits the speed and stability of the spindle, a
mathematical model must be developed that comprehends the complete dynamics of the
rotating shaft. This model could be used to predict the system vibrational behavior for
any given shaft/rotor configuration and rotational speed, and should also be capable of
predicting the vibrational behavior when subjected to external disturbances such as base
excitation.

2. BACKGROUND

The dynamics of shafts rotating about their axis has been the subject of many studies
concerned with rotating machinery. A comprehensive treatment of early state-of-the-art
rotor dynamics and self excited vibrations was provided in reference [6], including the
effects of the centrifugal forces, with numerous solutions to practical vibration problems.
A detailed analysis was presented explaining how the angular velocity of the rotating shaft
influences the critical speeds of the system, with reference to the stability limitations
resulting from the centrifugal force. The method of modal analysis was introduced in
reference [7] for a rotating beam supported by flexible bearings subjected to a mass
imbalance, initial curvation, and gravity. This paper followed the classical formulation in
developing the equations of motion for the ideal shaft but did not include any inertia
effects. The dynamics of a continuous shaft subjected to an externally applied torque was
investigated in reference [8]. In this investigation, the classical differential equations of
motion describing the Timoshenko beam were developed with specific attention to the
effects of transverse shear, gyroscopic moments, rotary inertia, externally applied torque,
and their interactions with the critical speeds of high speed rotors. The effect of the
centrifugal force component of the gyroscopic moment was not considered, and only the
effect of the rotary inertia on the shaft’s mass was identified. In each of these studies, the
primary concern of the analysis was to investigate the rotor critical speeds, and to
investigate stability between critical speed ranges. In these articles, the rotor is treated as
a distributed parameter system describable by partial differential equations of motion.

Modal analysis and assumed shape functions were used in reference [9] to treat an
undamped Rayleigh beam supported on isotropic bearings and rotating at a constant
angular velocity. A second solution was developed utilizing a set of approximate shape
functions based on the closed form solution to a stationary shaft. It was demonstrated that
both the modal analysis formulation and the shape function approximation yield correct
results. The shape function approximation was shown to be in excellent agreement with
closed form solutions for simple cases.

The above study was extended in reference [10] to include a rotating, Rayleigh beam
with rotor, supported on anisotropic bearings. The effects of rotary inertia and the
gyroscopic moment were included. In reference [11], the Euler–Bernoulli, Rayleigh and
Timoshenko beam theories were used to model a simply supported shaft rotating at a
constant angular velocity. The equations of motion were derived utilizing the
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Newton–Euler equations for dynamic equilibrium and the gyroscopic inertia was treated
as an external moment. The results show good agreement with available solutions for the
stationary beam subject to moving loads. A study in reference [12] extended the
Timoshenko beam rotating at a constant angular velocity to include an accelerating,
distributed transverse load having an exponential velocity.

The Lagrangian development of the equations of motion was presented in reference
[13, 14] for the rotating Euler beam. The instability resulting from the rotation of the beam
was recognized, but the effect of the Coriolis coupling on the stability was not addressed.
The dynamic equations of motion for the rotating shaft were presented in reference [16]
through the application of Hamilton’s principle. The resulting Euler–Lagrange equations
fully contain both the Coriolis and centrifugal inertia forces and a number of examples
were studied assuming constant angular velocities. The focus of this investigation was the
determination of intermediate support locations to correct for the instability resulting from
the shaft rotation. The mathematical development used the assumed mode method in the
specification of shape function approximations and the results were obtained using
numerical techniques.

In this paper, the response of an isotropic shaft rotating about its isotropic axis at an
arbitrary angular velocity is investigated. The cross-sectional dimensions and the shaft
deflections are assumed small in comparison to its length and the effect of shear
deformation is neglected. Both the classical formulation using the Newton–Euler equations
of dynamic equilibrium and the principle of virtual work in dynamics are used to develop
the equations of motion. In the classical formulation, the equations of motion are
presented for the specific case of a shaft rotating at a constant angular velocity about its
axis. The equations of motion for the general formulation are then developed using the
multibody methodology. This formulation includes the effects of the Coriolis inertia force,
as well as two additional inertia forces which influence the effective stiffness of the shaft.
The gyroscopic moments are developed directly through the virtual work concept.

A more general formulation will also be developed to examine the dynamics of a rotating
shaft when the effects of rotary inertia are included. The constant matrices which describe
the effects of the rotary inertia on the effective mass will also be obtained. The generality
of the approach presented is further demonstrated by considering the dynamics of a
rotating shaft subject to a base excitation. The coupling between the base motion and the
deformation of the shaft is examined numerically and the effect of the support motion on
the vibrational behavior of the shaft is discussed for both a low level and high level
distubance.

3. CLASSICAL FORMULATION

In this section, the classical formulations of the equations of motion of a shaft rotating
about its axis at a constant angular velocity are reviewed. It is assumed that the
cross-sectional dimensions of the shaft are small in comparison to its length and the effect
of shear deformation is neglected. The equations of motion are derived by applying
Newton–Euler equations to a cross-section of an infinitesimal length of the rotating shaft
shown in Figure 1. The effect of the induced gyroscopic moment is obtained using the
definition of the angular momentum as it applies to the rotation of the cross-section of
the shaft. The purpose of the analysis presented in this section is to demonstrate the
limitations of, and the approximations used in deriving the classical formulations of
rotating shaft problems, as compared to the more general multibody formulation presented
in the following sections.
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Figure 1. Rotating shaft.

The relationship between the angular accelerations and the applied moments are defined
by Euler’s equation

T= rI12C/1t2, (1)

where T is the vector of moments, I is the inertia tensor of an infinitesimal cross-section
of the shaft, such that

I= &2I
0
0

0
I
0

0
0
I', (2)

I is the moment of inertia of the cross-section about the y- and z-axes, r is the shaft density,
and the angular displacement of the shaft is given by

C=[0 c2 c3]T,

where c2 and c3 are the rotations about the y- and z-axes, respectively. In equation (1),
it is assumed that the shaft rotates with a constant angular velocity v1 about the x-axis,
and as a consequence, its angular acceleration about the x-axis is identically equal to zero.
The angular displacements can be written as

c2 =−1u3/1x, c3 = 1u2/1x,

where u2 and u3 are the displacements in the y and z directions.
The angular momentum of the shaft is given by

H� = rIv, (3)

where

v=[v1 0 0]T. (4)

Using the rate of change of the angular momentum and following the procedure described
in reference [17], the classical equations of motion for the rotating shaft are defined as

rAü2 +EIu002 − rIü02 −2rIv1u̇03 =Ft(x, t), rAü3 +EIu003 − rIü03 +2rIv1u̇02 =0,

(5a, b)

where A is the cross-sectional area, E is the modulus of elasticity, Ft is a transverse force
acting in the y direction, (·) implies differentiation with respect to time, and (') implies
differentiation with respect to the spatial co-ordinate.

In obtaining the classical equations of motion presented in this section, several
simplifying assumptions are made. These assumptions limit the use of this formulation in
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the analysis of more general cases. The limitations and approximations can be summarized
as follows:

1. The angular velocity of the shaft is assumed constant, and as such, the classical
formulation cannot be used in the analysis of shafts that have non-zero angular
accelerations.

2. In the classical formulation, the effect of the longitudinal displacement resulting from
the transverse applied load is neglected. As a result of the rotary inertia effect, bending
deformations affect the longitudinal displacement of the rotating shaft. Such an effect
cannot be examined using the classical approach.

3. The classical formulation does not take into consideration the support vibration
resulting from support movements, or bearing looseness and joint clearances. Therefore,
the use of this formulation is limited to special rotating shaft problems where base
excitations and joint and bearing flexibility are ignored.

4. In the classical formulation, the complete effect of the deformation on the expression
of the angular momentum is not taken into consideration. At high speed rotations, such
as those encountered in modern rotating spindle applications, a more precise definition for
the inertia forces must be used.

4. FLEXIBLE MULTIBODY EQUATIONS

Using the principle of virtual work in dynamics, it can be shown that the equations of
motion of a deformable body that undergoes an arbitrary displacement can be written as

Mq̈+Kq=Qv +Qe, (6)

where M is the body mass matrix, K is the stiffness matrix, Qv is the vector of Coriolis
and centrifugal forces, and Qe is the vector of generalized applied forces [18]. The vector
of generalized co-ordinates q can be written in a partitioned form as

q=[RT uT qT
f ]T (7)

in which R is the reference displacement, u is the set of parameters that define the body
orientation, and qf is the vector of elastic co-ordinates. According to this co-ordinate
partitioning, the equation of motion can be written as

&mRR mRu mRf

muR muu muf

mfR mfu mff '&R�u�q̈f'+ &0 0 0
0 0 0
0 0 kff'&Ruqf'= &(Qv)R

(Qv)u

(Qv)f'+ &(Qe)R

(Qe)u

(Qe)f', (8)

where the elements of the mass matrix, stiffness matrix, quadratic velocity vector Qv, and
the vector of generalized external forces, Qe, are defined in explicit form in references [17].
The elements of the mass matrix are defined as

M= &mRR mRu mRf

muR muu muf

mfR mfu mff '=g r& I

Symmetric

Au� G�
G�Tu� Tu� G�

AS
G�Tu� S
STS ' dV, (9)

where the integration is taken over the volume of the body V, A is the transformation
matrix that defines the orientation of the body co-ordinate system, u� is the skew symmetric
matrix associated with the vector ū which defines the position of an arbitrary point on the
body with respect to the body co-ordinate system, S is the shape function matrix, and G�
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is the matrix relating the angular velocity vector to the vector of time derivatives of the
orientation co-ordinates. That is

ū= ū0 + ūf = ū0 +Sqf, v̄= G�u� , (10)

where ū0 is the position of an arbitrary point on the body in the undeformed state, ūf is
the time and space dependent deformation vector and v̄ is the angular velocity vector
defined in the body co-ordinate system. The vector of the Coriolis and centrifugal forces
is defined as

(Qv)= &(Qv)R

(Qv)u

(Qv)f'=G
G

G

G

G

K

k

−A{v� 2S�f −gru� dVG� u� +2v� S�q̇f}

−G� TI�uu v̄−2G� TI�ufq̇f −G�TI� uu v̄

−g r{ST[v� 2ū+2v� u� f]} dV

G
G

G

G

G

L

l

, (11)

where

S� =g rS dV, S�f =g rū dV, I�uu =g ru� Tu� dV, I�uf =g ru� TS dV, (12)

and v� is the skew symmetric matrix associated with the angular velocity vector v̄ defined
in reference [18].

5. APPLICATION TO THE ROTATING SHAFT PROBLEM

For the constrained shaft as pictured in Figure 1, the origin of the shaft co-ordinate
system is assumed to coincide with the origin of the global reference system, such that R is
the null vector, and, as a consequence of the angular velocity being specified, the equations
of motion associated with the elastic co-ordinates need only be used to completely describe
the system deformations. The equations of motion associated with the elastic co-ordinates
of equation (8) can be written, in the case of zero reference translations, as

mfuu� +mffq̈f + kffqf =(Qv)f +(Qe)f. (13)

Using the equations presented in the preceding section, equation (13) can be expressed as

mffq̈f +2Sv q̇f +(kff +Svv )qf = I�T
uf(G�u� +G� u� )−Sv0 + (Qe)f, (14)

where

Sv =g rSTv� S dV, Svv =g rST(v� )2S dV, Sv0 =g rST(v� )2ū0 dV, (15)

and I�uf is previously defined.

5.1.  

For a uniform shaft rotating about its x-axis, the undeformed position and angular
velocity vectors are given by

ū0 = [x 0 0]T, v̄=[v1 0 0]T. (16)

By letting the shape function be defined in a general matrix form as

S=[ST
1 ST

2 ST
3 ]T, (17)
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where Sk is the kth row of the shaft shape function, the quadratic velocity vector terms
appearing in equation (15) reduce to

Svv =−v2
1S
 , Sv =−v1S	 , Sv0 = 0, (18)

where

S
 =g rSTI�cS dV, S	 =g rSTI	 S dV, (19)

I�c = &0 0 0
0 1 0
0 0 1', I	 =−& 0 0 0

0 0 −1
0 1 0 '. (20)

Using these identities and definitions, equation (14) reduces to

mffq̈f −2v1S	 q̇f −(kff +v2
1S
 )qf = I�T

uf(G�u� +G� u� )+ (Qe)f. (21)

Note that the differences between equation (21) and the more generalized form presented
by equation (14) is due to the special forms of the vectors ū0 and v̄ as defined by equation
(16). Since ū0 and v̄ are assumed to be parallel vectors, their cross product is equal to zero,
and as a consequence, the centrifugal force vector Sv0 is identically equal to zero. If the
dimensions of the shaft are such that the y and z components of the vector ū0 cannot be
neglected, the vector Sv0 is not equal to zero. For instance, if

ū0 = [x y z]T, (22)

one has

Sv0 =g rST(v� )2ū0 dV=g rST(v� )2&xyz' dV. (23)

It follows that

Sv0 =−v2
1 g r[yST

2 + zST
3 ] dV. (24)

In applications such as high speed machining, the centrifugal force vector can be very
significant even in the cases where the dimensions of the cross-section are small compared
to the length of the shaft. One also notes that in the case of a simple rotation,

G� u� =0, G�u� = a, (25)

where a is the angular acceleration of the shaft. Using these identities and the definitions
of equation (16), the generalized equation of motion for a rotating shaft given by equation
(21) can further reduce to

mffq̈f −2v1S	 q̇f +(kff −v2
1S
 )qf − I�T

ufa=(Qe)f. (26)

Note that I�T
uf can be written as the sum of two matrices:

I�T
uf = I�T

u1 + I�T
u2, (27)
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where

I�T
u1 =g rSTu� 0 dV, I�T

u2 =g rSTu� f dV, (28)

and u� 0 and u� f are previously defined. Note that if the cross-section dimensions of the shaft
are neglected in the definition of the vector u� 0, the vectors ū0 and a are parallel, and as
a consequence,

ū0 × a= u� 0a= 0.

It follows that

I�T
u1a=0.

Using simple vector and matrix operations, it can be shown that

I�T
u2a= a1 g rSTI	 S dVqf = a1S	 qf,

where S	 is defined in equation (19), and a1 is the amplitude of the angular acceleration
vector. Hence,

I�T
ufa= a1S	 qf

and the equations of motion of the rotating shaft reduce to

mffq̈f −2v1S	 q̇f +(kff −v2
1S
 − a1S	 )qf =(Qe)f. (29)

This equation describes the dynamics of an accelerating shaft and therefore its use is not
limited only to the case of constant angular velocity.

5.2. 

If the dimensions of the cross-section of the shaft are neglected in defining the vector
ū0, and the angular acceleration is prescribed, equation (29) in the absence of external
forces, defines a homogeneous system of ordinary differential equations. This system has
zero response if the initial conditions are equal to zero since the inertia forces resulting
from the rotation of the shaft are of the passive type [19].

If the transverse dimensions of the cross-section of the shaft are considered in defining
the vector ū0 as defined by equation (22), I�T

u1 can be written as

I�T
u1a=g rSTu� 0 dVa= a1 g r(zST

2 − yST
3 ) dV (30)

and the equations of motion of the accelerating shaft can be written as

mffq̈f −2v1S	 q̇f +(kff −v2
1S
 − a1S	 )qf = I�T

u1a−Sv0 + (Qe)f, (31)

where Sv0 is defined by equation (24).
In the absence of external forces, the preceding system defines a set of non-homogeneous

differential equations, and as such, the response of this system is significantly different from
that of the system defined by equation (29), in which the cross-section dimensions of the
shaft are neglected.
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6. EFFECT OF ROTARY INERTIA

In the previous sections, the effect of rotary inertia due to the angular deflection of the
cross-section was not considered. In this section, the effect of the rotary inertia on the
dynamics of the rotating shaft is examined. It will be demonstrated that these effects can
be systematically captured in the flexible multibody formulation.

Let r, as shown in Figure 2, represent the global position of an arbitrary point on the
deformable body such that

r=R+A(ū0 + ūf +ArūL),

where the undeformed position vector ū0, the time and space dependent deformation vector
ūf =Sqf, the shape function S, the global transformation matrix A, and the vector of
generalized time dependent elastic co-ordinates qf are as defined in the preceding sections.
The transformation matrix Ar describes the infinitesimal rotation of the cross-section with
respect to the shaft co-ordinate system, and the position vector ūL describes the position
of an arbitrary point in the rotated plane of the deformed shaft. The transformation
matrices can be written as

A= &100 0
cos u

sin u

0
−sin u

cos u', Ar = & 1
c3

−c2

−c3

1
0

c2

0
1 ', (32)

where the vectors ū0 and ūL are defined as

ū0 = [x 0 0]T, ūL =[0 y z]T,

and c2 and c3 are the rotations of the cross section about the y and z axes of the shaft
coordinate system. It can be shown that the global position vector r can be restated as

r=R+A(ū0t +Stqf)=R+Aū, (33)

where

ū0t =[x y z]T, St = &S1

0
0

− y1S2/1x
S2

0

− z1S3/1x
0
S3 '. (34)

Figure 2. Co-ordinates of an arbitrary point on the cross-section.
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Using equation (33), and applying the virtual work principle, one can show that the
equation of motion of the rotating shaft which includes the effect of the rotary inertia can
be written as

mffq̈f −2v1S	 tq̇f +(kff −v2
1S
 t − a1S	 t)qf = a1I�0t +v2

1S
 0t +(Qe)f, (35)

where

mff =g rST
t St dV, S	 t =g rST

t I	 St dV, S
 t =g rST
t I�cSt dV,

I�0t =g rST
t I	 ū0t dV, S
 0t =g rST

t I�cū0t dV. (36)

A significant consequence of including the effect of the rotary inertia in the dynamic
equations is the coupling of the axial displacement to the in-plane and out-of-plane
bending modes [17].

7. APPLICATION

In this section, an example that demonstrates the use of the generalized equations of
motion developed in the preceding sections is considered. This application will be used to
examine the effect of the coupling between the modes of deformation of the rotating shaft.
The closed form solution to a stationary shaft with simply supported end conditions will
be used to approximate the transverse modes of vibration and the effect of the centrifugal
and Coriolis forces will be examined.

In this section, the deformation of the rotating shaft is described using three mode
shapes. These mode shapes correspond to the closed form solution for a stationary shaft
with simply supported end conditions and can be written as

S= &S1

S2

S3'= &sin ((p/l)x)
0
0

0
sin ((p/l)x)

0

0
0

sin ((p/l)x)'=sin ((p/l)x)&1 0 0
0 1 0
0 0 1' (37)

where only the fundamental modes of vibration are used.
The shape function matrix can be used to evaluate the constant matrices that appear

in the equations of motion of the rotating shaft. We will consider the special case of the
constrained shaft of section 5, where the effect of the rotary inertia is neglected. In this
case, the dynamics of the shaft is governed by equation (29). The constant matrices that
appear in this equation can be evaluated in the case of simply supported shaft as

mff =g rSTS dV= &m/2
0
0

0
m/2
0

0
0

m/2', S	 =g rSTI	 S dV=&000 0
0

−m/2

0
m/2
0 ',

0 0 0

S
 =g rSTI�cS dV=G
G

G

G

G

K

k

0
m
2

0 G
G

G

G

G

L

l

,

0 0
m
2
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K L K L
k1 0 0 EA

p2

2l2 0 0G G G G
G G G G

kff = 0 k2 0 = 0 EI
p4

2l3 0 .G G G G
G G G G

0 0 k3 0 0 EI
p4

2l3k l k l
The vector of elastic co-ordinates is a three-dimensional vector which can be written as

qf =[q1 q2 q3]T, (38)

where q1 is the time dependent elastic co-ordinate associated with the axial mode of
deformation, and q2 and q3 are the time dependent elastic co-ordinates associated with the
in-plane and out-of-plane bending deformations, respectively.

Substituting the constant matrices and vectors into equation (29), the matrix equation
of motion of the rotating shaft can be written as

1 0 0 0 0 0
m
2
G
G

G

K

k
0 1 0 G

G

G

L

l
q̈f +v1mG

G

G

K

k
0 0 −1 G

G

G

L

l
q̇f

0 0 1 0 1 0

k1 0 0

+G
G

G

K

k

0 k2 −v2
1
m
2

− a1
m
2 G

G

G

L

l

qf =(Qe )f (39)

0 a1
m
2

k3 −v2
1
m
2

8. EFFECT OF THE CORIOLIS COUPLING

To illustrate the effect of the coupling between the in-plane and out-of-plane
deformations in the absence of any external forces for a rotating shaft, the equations of
motion will be examined for the case of a shaft rotating at a constant angular velocity.
With the assumption that the angular acceleration is zero, the equations of motion for the
in-plane and out-of-plane bending can be obtained from equation (39) as

$me

0
0
me%q̈f +$ 0

2v1me

−2v1me

0 %q̇f +$Ke

0
0
Ke%qf =$00%, (40)

where me and Ke are the effective mass and stiffness coefficients, defined as

me =m/2, Ke =EIp4/2l3 −v2
1me . (41)

In the absence of an applied force, initial conditions must be specified in order to obtain
a non-trivial solution for the preceding set of homogeneous second order differential
equations.

8.1.     

If the effect of the out-of-plane bending is neglected in the preceding equation, one
obtains a single-degree-of-freedom system. Considering the shaft rotation without
coupling, the in-plane equation of motion is given by me q̈2 +Keq2 =0 which can be shown
to have the general solution q2(t)=X sin (vft+f), where X is the amplitude, f is the
phase angle and vf is the natural frequency given by
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vf =zKe /me.

As long as Ke remains positive, the response is stable. Since Ke is a function of the square
of the angular velocity, as given by equation (41), the response will have a limited stability
range. That is, for the case of simply supported end conditions, the angular velocity of
the shaft must be chosen such that v1 QzEIp4/2mel3 for the response to be stable.

8.2.      

It was demonstrated that if only one transverse mode of vibration is considered, the first
order velocity dependent term in equation (40) vanishes. As a consequence, the system
reaches a stability limit as the angular velocity of the shaft increases. In the following
development, the effect of the mode coupling due to the Coriolis force on the dynamics
and stability of the rotating shaft is examined. A solution of equation (40) can be assumed
in the form

qf =Xest.

Substituting into equation (40), the characteristic equation can be obtained as

m2
e s4 + (2meKe +4v2

1m2
e )s2 +K2

e =0.

The roots of this equation are

s1 = jV1, s2 =−jV1, s3 = jV2, s4 =−jV2,

with

V1 =z[(j+v2
1me )−2v1zjme ]/me, V2 =z[(j+v2

1me )+2v1zjme ]/me,

where j=EIp4/2l3 and j=z−1.
The solution of the equation of motion of the rotating shaft can then be written as

qf =$q2

q3%=$C11 sin (V1t+f11)+C12 sin (V2t+f12)
C21 sin (V1t+f21)+C22 sin (V2t+f22)%, (42)

where C11, C12, C21, C22, f11, f12, f21, f22 are arbitrary constants which can be expressed
in terms of four independent constants using the amplitude ratios (mode shapes), and are
determined using the initial conditions specified for the rotating shaft problem. The
preceding equation, however, demonstrates that regardless of the value of the angular
velocity of the rotating shaft, the solution is stable, and the stability limitation observed
when one mode of vibration is considered is eliminated.

With the mathematical expressions demonstrating the coupling effect developed above,
numerical integration techniques can be used to obtain the time dependent elastic
deflections for a shaft of 0·020 m diameter, modulus of elasticity E=2·07×1011 N/m2,
density r=7700 kg/m3, and shaft length l=1 m. The equations of motion are generalized
to allow the inclusion of more than one mode in each direction with an initial condition
of q20 =0·25×10−3 m deflection assumed for both the in-plane fundamental and second
harmonic, in-plane velocity q̇20 =0, and out-of-plane initial deflection and velocity of
q30 = q̇30 =0. It is readily seen that for the case of zero coupling between planes and in
the absence of any applied force, the out-of-plane response is zero. Figures 3(a–f) show
the in-plane deformations, with respect to the time dependent co-ordinate q2, for angular
velocities of v1 =2250 r.p.m. (235·6 rad/s), 10 000 r.p.m. (1047·2 rad/s), and 25 000 r.p.m.
(2618 rad/s), respectively. The out-of-plane deformations are 90° out of phase with the
in-plane deformations and follow the identical development.
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Figure 3. In-plane deflection of a shaft rotating at a constant angular velocity of v1 (r.p.m.) (a) 2250,
fundamental mode; (b) 2250, second harmonic; (c) 10 000, fundamental mode; (d) 10 000, second harmonic; (e)
25 000, fundamental mode; (f) 25 000, second harmonic.

9. NON-CONSTANT ANGULAR VELOCITY

For the constrained shaft rotating with a specified non-constant angular velocity, the
equations of motion, which do not include the effect of the rotary inertia, can be obtained
from equation (39) as

$me

0
0
me%q̈f +$ 0

2v1(t)me

−2v1(t)me

0 %q̇f +$ Ke (t)
a1(t)me

− a1(t)me

Ke (t) %qf =$00%. (43)

The characteristic equation of the homogeneous system of equation (43) can be expressed
as

m2
e s4 + [2meKe (t)+4m2

ev
2
1 (t)]s2 +4m2

ev1(t)a1(t)s+K2
e (t)+m2

ea
2
1 (t)=0, (44)

where the stiffness coefficient, angular velocity and angular acceleration are functions of
time. It is clear for any specific point in time that the roots of this equation are dependent
on the direction of the angular acceleration, and could have a significant effect on the
stability of the rotating shaft.
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As an example, consider a shaft rotating at an angular velocity given by

v1(t)=Vs (1−e−tt), (45)

with angular acceleration

a1(t)=Vst e−tt, (46)

which describes a velocity function starting at x=0 with v1(0)=0, then exponentially
approaches a steady value, Vs , and remains at that value. The acceleration function begins
at its maximum value and exponentially decreases to zero over time. The parameter t

controls how fast the shaft reaches the steady state.
Given identical physical parameters and initial conditions as specified for the case of the

shaft rotating at a constant angular velocity, the time dependent elastic deflections can be
obtained by applying numerical techniques to equation (43). For steady state angular
velocity amplitudes of v1 =2250 r.p.m., 10 000 r.p.m., and 25 000 r.p.m., respectively,
Figures 4(a–f) represent the magnitude and frequency of the vibration resulting from the
given initial conditions. For the case shown in Figures 4(a) and 4(b), where v1 Qvn (vn

is the natural frequency of the stationary shaft), it is apparent that the ramping function
alters the vibration response in the 0·2 second time period but does not reduce the
magnitude or the frequency of the vibration. As the angular velocity is increased, such that
v1 qvn , as seen in Figures 4(c) and 4(d), to a steady state value of v1 =10 000 r.p.m.,
there is a reduction in vibration amplitude in the in-plane modes by an order of magnitude,
as compared to the constant angular velocity of Figures 3(c) and 3(d), though the
frequency remains the same. The second harmonic response is altered, but the amplitude
is equal to the applied initial displacement. As the angular velocity is increased further,
as shown in Figures 4(e) and 4(f), for the steady state angular velocity of
v1 =25 000 r.p.m., a similar decrease in the amplitude in the fundamental mode is
observed. In each case, the maximum amplitude of vibration is equal to the specified initial
deflection.

10. SUPPORT EXCITATION

The effect of the base excitation can be examined using the flexible multibody
formulation for the rotating shaft problem developed in section 4. The dynamic equations
of motion for the case of a specified rigid body translation can be obtained from the general
flexible multibody equations as

S�TATR� + mffq̈f −2v1S	 qf +(kff −v2
1S
 − a1S	 )qf =(Qe)f, (47)

where, for the case of the rotating shaft, each matrix is as previously defined. A similar
equation can also be defined if the effect of the rotary inertia is considered. In this case,
the shape function S is replaced by the matrix St defined in the preceding section.

Consider a base motion to be harmonic in the y direction, such that

R=Vb sin vbt[0 1 0]T, (48)

where Vb is the vibration amplitude and vb is the frequency of excitation. In the case of
a simply supported shaft, one has

S�TATR� =
4me

p &100 0
sin v1t

−sin v1t

0
sin v1t
cos v1t'(−Vbv

2
b sin vbt)&010'.
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Figure 4. In-plane deflection of a shaft rotating at a non-constant angular velocity v1 =Vs(1−e−tt) with
t=12 and Vs (r.p.m.): (a) 2250, fundamental mode; (b) 2250, second harmonic; (c) 10 000, fundamental mode;
(d) 10 000, second harmonic; (e) 25 000, fundamental mode; (f) 25 000, second harmonic.

Using this equation, equation (47) leads to

$me

0
0
me%q̈f +2v1me $0 −1

1 0%q̇f +$Ke

0
0
Ke%qf =

4me

p
Vbv

2
b sin vbt$−cos v1t

sin v1t %, (49)

where me and Ke are the effective mass and stiffness coefficients defined by equation (41).
A similar procedure, as previously applied, can be used to formulate the rotating shaft
problem in terms of more fundamental modes and degrees of freedom.

For the case of a low level base excitation of 60 Hz (377 rad/s) and amplitude of 0·005
in (1·27×10−5 m), this disturbance super-imposes an additional vibration on a shaft
rotating at an angular velocity of v1 =2250 r.p.m. For angular velocities of 5000 r.p.m.
and greater, the numerical analysis indicates that the low level excitation does not affect
the deformations of the rotating shaft.

The effect of a high level base excitation of 1000 Hz (6283 rad/s) and amplitude of 0·005
in (1·27×10−5 m), is presented in Figures 5(a–f). Figures 5(a) and 5(b) indicate that the
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high level disturbance has a significant effect on the shaft rotating at 2250 r.p.m. The
deformation has a super-imposed excitation increasing the amplitude of vibration by a
factor of 4 relative to the non-translating case shown in Figures 3(a) and 3(b). As the
angular velocity of the shaft increases, the high level disturbance has less of an impact on
the shaft’s vibrational amplitude. For a shaft rotating at 5000 r.p.m. [17], the amplitude
of the vibration increases by a factor of 2. Figures 5(c) and 5(d) represents the response
of a shaft rotating at 10 000 r.p.m. to the 1000 Hz excitation. The amplitude of vibration
is observed to increase by a factor of 1·5. For a shaft rotating at an angular velocity of
25 000 r.p.m., shown in Figures 5(e) and 5(f), the amplitude is approximately the same as
the case with no base excitation. It is apparent, as the rotational speed of the shaft
increases, the effect of the base excitation diminishes. The out-of-plane deformations
exhibit an identical vibration response, though displaced 90°, as demonstrated in the
in-plane deformation discussed in this section.

Figure 5. In-plane deflection of a rotating shaft subject to a high level base excitation of 1000 Hz, rotating
at a constant angular velocity of v1 (r.p.m.): (a) 2250, fundamental mode; (b) 2250, second harmonic; (c) 10 000,
fundamental mode; (d) 10 000, second harmonic; (e) 25 000, fundamental mode; (f) 25 000, second harmonic.
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11. SUMMARY AND CONCLUSIONS

In this investigation, the dynamics of rotating shafts was examined. The classical
equations of rotating shafts were presented, and the limitations of the classical theory were
outlined. The general flexible body equations of motion were presented and also tailored
to the rotating shaft problem. It was shown that the general flexible body formulation can
be used to examine more general cases of rotating shaft applications and can be used to
systematically include the effects of the change in the angular velocity, the effect of the
rotary inertia, and the effect of support vibrations which cannot be examined using the
classical approach. It was demonstrated that the centrifugal inertia forces, which are
proportional to the square of the angular velocity, tend to reduce the system stiffness
coefficients. Such a system becomes unstable if the effect of the coupling between the
in-plane and out-of-plane bending is neglected. It was demonstrated in this investigation
that the coupling between the in-plane and out-of-plane bending modes is the result of the
Coriolis inertia forces and has a significant effect on the stability of the rotating shaft. In
order to illustrate the generality of the flexible multibody formulation, a case study was
presented. The closed form solution for a stationary shaft with simply supported end
conditions is used to describe the modes of deformation of the rotating shaft. It was shown
that these equations also allow the use of a non-constant angular velocity.

It was also shown that the effect of the rotary inertia can be systematically incorporated
in the flexible multibody formulations. All that is required is a change in the form of the
shape function matrix in order to include the effect of the rotation of the cross-section.

The effects of a base excitation, common to machining shafts with loose or misaligned
supports, on the dynamics of the rotating shaft was also examined. Numerical results were
presented for different conditions of the base excitation in order to demonstrate the
generality of the flexible body formulation.
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NOMENCLATURE

A cross-sectional area (m2)
A three-dimensional rotation matrix

which defines the orientation of the
body in the global system

Ar matrix which describes the infinitesi-
mal rotation of the cross-section of
the shaft with respect to the shaft
co-ordinate system

a vector of angular accelerations
a1 angular acceleration of the shaft in

the x direction (rad/s2)
b mode shape
D damping matrix
r density (kg/m3)
d(x− vt) Dirac delta function; v is the linear

velocity of the moving force
E matrix of elastic co-ordinates
E Young’s modulus of elasticity (N/m2)
e vector of strains
F magnitude of the external force (N)
G� matrix which relates the angular

velocity vector to the time derivatives
of the orientation co-ordinates

H� vector of angular momentum
Iuu inertia tensor
I� uu deformation dependent submatrix

associated with the Coriolis inertia
force in the orientation co-ordinate

I�uf deformation dependent submatrix
associated with coupling between the
rotation and the elastic deformation

I�0t time invariant vector associated with
the undeformed co-ordinates when
the effect of rotary inertia is con-
sidered

I0 time invariant submatrix associated
with the coupling between the trans-
lation and rotation of the co-ordinate
system

I�0 time invariant vector associated with
the undeformed co-ordinates

K stiffness matrix
Ke effective stiffness coefficient
kff stiffness matrix associated with the

elastic co-ordinates of the deformable
body

l length (m)

M mass matrix
m mass (kg)
me effective mass coefficient
mRR submatrix associated with the trans-

lation of the body reference
mRu submatrix which represents the coup-

ling between the translation and
rotation of the co-ordinate system

muu submatrix associated with the orien-
tation of the body; a function of the
inertia tensor I�uu

mRf submatrix which describes the coup-
ling between the translation and the
elastic deformation

muf submatrix which describes the coup-
ling between the rotation and the
elastic deformation

mff submatrix associated with the defor-
mation co-ordinates of the body

V vector of rate of precession
Q matrix of generalized applied forces
Qe vector of generalized forces associ-

ated with the body generalized
co-ordinates

Qv vector consisting of the centrifugal
and Coriolis inertia forces

q vector of time dependent co-ordi-
nates

qf vector of time dependent elastic
co-ordinates of the deformable body

r global position vector
R vector which defines the global

position of the body co-ordinate
system

S matrix of position dependent shape
functions

s vector of stresses
St shape function matrix including the

effects of the rotary inertia
u vector of orientation co-ordinates
u angle of rotation of the shaft

(radians)
u1 displacement in the x direction
u2 displacement in the y direction
u3 displacement in the z direction
ū vector which defines the co-

ordinates of the arbitrary point with
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respect to the body co-ordinate
system

ū0 vector describing the position of the
arbitrary point in the undeformed
state

ūf time and space dependent defor-
mation vector

dWi virtual work of the inertial force
dWe virtual work of the externally applied

force

dWs virtual work of the elastic force
v vector of angular velocities
v� skew symmetric matrix associated

with the angular velocity vector v̄
v1 angular velocity of the shaft in the x

direction (r.p.m., rad/s)
vn natural frequency of the non-rotating

shaft (r.p.m., rad/s)
c vector of angular displacements of

the rotating shaft


